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No. XXVIII. 

Research concerning the Mean Diameter of the Earth. By 
R. Jldrain.-Read, JN'ov. 7, 1817. 

THE figure of the earth approaches nearly to that of an 
oblate spheroid of revolution, the axis being to the equatorial 
diameter in the ratio of 320 to 321. When this figure is made 
use of in navigation, geography, 8c. the calculations become 
much more abstruse and laborious than when we consider the 
earth simply as a sphere. In certain cases, where extreme 
accuracy is necessary, the oblate figure must be taken into 
account; but in general, thc globular figure will still be re- 
tained, as sufficiently accurate for most purposes, of great 
simplicity in theory, and of easy calculation in practice. 

But, if we substitute a sphere instead of the spheroid with 
which the figure of the. earth very nearly coincides, we are 
by no means at liberty to choose the diameter of the sphere 
without restriction: we must select a sphere agreeing with 
the spheroid in as many important circumstances as possible. 
Of these the following deserve particular attention. 

I. The sphere should be equal in magnitude to the sphe- 
roid. 

II. The mass of the sphere should be equal to that of the 
spheroid. 
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III. The surface of the sphere should be equal to the sur- 
face of the spheroid. 

IV. The length of a degree of a great circle on the surface 
of the sphere should be a mean of all the degrees of great 
ellipses on the surface of the spheroid. 

V. The radius of the sphere should be a mean of all the 
radii of the spheroid. 

VI. The gravity on the surface of the sphere should be 
equal to the mean gravity on the surface of the spheroid. 

When the spheroid differs very little from a sphere, as in 
the present case, so that we may neglect as inconsiderable, 
all the powers of the ellipticity above the first, we are led to 
a remarkable coincidence; for all these conditions are ful- 
filled by one and the same sphere. The determination of 
this sphere is the object of the following calculations. 

PROBLEM I. 

To determine the radius of a sphere equal in magnitude to 
a given oblate spheroid of small ellipticity. 

SOLUTION. 

Let a and b be the greater and less semiaxes of the sphe- 
roid, r= the radius of the required sphere, and X= the circunm- 
ference of a circle to the diameter unity. 

By mensuration, the magnitude of the spheroid is .a2^, 3 

and that of the sphere is -4.r3; we have therefore . r=-4 
3 3 3 

a2b, consequently r3=a2b. 
It is evident, therefore, that the radius r is the first of two 

mean proportionals between a and b. 
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MEAN DIAMETER OF THE EARTH. 

When a and b are nearly in the ratio of equality, let b = 
a-c, and by substitution r3=a3-a2c, of which the cube root. 

retaining only the first power of c, is r=a--ie; 3 

or which is the same thing, r=b+-e, or r-2 
3 3 

According to these formulae r is the first of two arithmeti- 
cal means between a and b, and may be found by taking from 
the greater one third of the difference, or by adding to the 
less two-thirds of the same difference. 

When the less semiaxis b is denoted by unity, and the 

greater by 1+J, the ellipticity being J, we have r+l=-J. 
3 

We may easily determine in what latitude the semidiame- 
ter of the spheroid is equal to the radius of the equivalent 
sphere. 

For this purpose, let g = radius or semidiameter of the 
spheroid in the latitude x; and when only the first power of 
S is retained, we have, by the nature of the ellipse, 

?=1 +' cos2A. 
And since r=-, we have 

1+s cos~=l+3~ 
2 2 1 

therefore cosA=3, or sin2A=3; consequently the latitude 

A=350 16', in which the semidiameter of the spheroid is equal 
to the radius of a sphere equal in magnitude to the spheroid. 

When the densities of the sphere and spheroid are uni- 
form and equal, it follows from this proposition that their 

masses are equal, when r=l+ . 
3 
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PROBLEM II. 

To determine the radius of a sphere, of which the mass 
may be equal to that of a given oblate spheroid of small el- 
lipticity, when the density is variable. 

SOLUTION. 

Conceive the spheroid to be divided by concentric sphe. 
roidal surfaces into an infinite number of similar orbs having 
their axes proportional to the axes of the whole spheroid; 
and suppose the density in each orb to be uniform, but varia- 
ble fiom one orb to another, according to any law whatever. 
Draw, from the center of the spheroid, a radius to the parallel 
in which the square of the sine of the latitude is 3; with 

the several distances from the center to the points in which 
this radius cuts the surfaces of the orbs, describe spherical 
surfaces, comprehending an infinite number of spherical orbs; 
and suppose the density in each spherical orb to be the same 
with the density in the corresponding spheroidal orb. 

It evidently follows from the preceding solution, that the 
magnitudes of the corresponding spherical and spheroidal 
orbs are equal; because these orbs are the differences of 
spheroids and of corresponding spheres respectively equal to 
tlem. And since by supposition the density is the same in 
two corresponding spherical and spheroidal orbs, the masses 
in these orbs are equal, and therefore the sum of the masses 
of all the orbs in the sphere is equal to the sum of the masses 
of all the orbs in the spheroid; that is, the mass of the sphere 
is equal to the mass of the spheroid: the radius of the sphere 
being equal to the radius of the spheroid in latitude 35 16', 

2 
We have therefore, 7r=1+-2, where r = the radius of the re- 

quired sphere as in the preceding problem. 
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PROBLEM III. 

To determine the radius of a sphere, of which the surface 
may be equal to that of a given oblate spheroid of small elip- 
ticity. 

SOLUTION. 

Retaining the preceding notation, let x be an abscissa reck- 
oning on the less axis from the center, and y the correspond- 
ing rectangular coordinate of the elliptic meridian, and by 
the property of the ellipse the equation of the meridian is 

a x2+b2y2=a2b2. 
From this equation we easily find the differential of the 

spheroidal surface to be 
2ra a-b 2 

bdx4b+ b- 
the integral of which may be given in general terms by loga- 
rithnms; but in our problem the ellipticity is supposed to be 
very small: we may therefore proceed as follows. 

Put b=1, a=l+J, and we have a--b=2A, the powers of J 
above the first being neglected; the preceding differential thus 
becomes 2(t+J).dxvi+^Sx. 

But V/ +2jx2= 1+x2, and therefore the differential of the 
surface becomes dx;(l+a+,x), 
of which the integral beginning with x is 

27r (l+J)X+ . 

When x= 1 we have half the surface =27r( +- ), therefore, 

4 
the whole surface of the spheroid is 47r(l+-). 3 
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Again, the surface of a sphere to the radius r is 4rr2, we 

must therefore have 47rr=4,(1+- ); 
44 2a 

whence r'= 1+-, and consequently r= + -. 

This result gives precisely the same value of r as in the 
preceding problems; it is manifest, therefore, that a sphere 
of which the radius is equal to the semidiameter of the spheroid 
in latitude 35? 16' will have its surface and solidity respec- 
tively equal to those of the spheroid. 

The surface of the spheroid of small ellipticity may be easi- 
ly determined in a different manner, as follows. 

Let A denote the reduced latitude, or as it is called by 
Delambre, the geocentric latitude, which is the angle con- 
tained betwen e and a; and by conics, retaining only the first 
power of l, we have 

=l +J cos2A; 
the value of e being the same in terms of A as when A is the 
common latitude, the powers of S above the first being re- 
jected. Also g may be considered as at right angles to the 
meridian, because the sine of the angle which g makes with 
the true elliptic meridian does not involve J, but J2, P', Ic. 

In this case the element of the meridian will be denoted 
by ?.dA, which multiplied by the length of the parallel 2re cos A, 
gives 2-x,.dA cos A for the differential of the spheroidal surface. 
But 2= l +2 cos A, therefore the differential of the surface is 

2-r(dA COS A+2S.dA C083A), 
of which the integral beginning with A is 

27r sin A+(2 sin A-3 Sin3) . 
3 ? 3 

IV 4<I 
This expression when A=- becomes 27r(l+-), and there- 

fore the whole surface =4ir(l+- ), which coincides exactly 
ith the result of the preceding investigation. with the result of the preceding investigation. 
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PROBLEM IV. 

To find a sphere, on which the degree of a great circle 
may be a mean of all the degrees of great ellipses of a given 
oblate spheroid of small ellipticity. 

SOLUTION. 

Since the degree is always proportional to the radius of 
curvature, it is obvious that the proposed problem is equiva- 
lent to the following: 

To find a sphere, of which the radius may be a mean of 
all the radii of curvature of the spheroid. 

The semiaxes of the spheroid being denoted by 1 and 1+s, 
and the latitude by A; let R be the radius of curvature of the 
meridian in latitude A, and R' the radius of curvature of the 
central ellipse at the point where it cuts the meridian at right 
angles in the same latitude. 

By conics and the differential calculus we have 
R_1+J(2-3 cos 2A), and R'=1+J(2-Cs 2A); 

the latter R' being the same with the radius of curvature of 
the vertical section cutting the meridian at right angles in 
latitude A, when we neglect the powers of S above the first. 

Again, let A be the angle which a vertical or central ellipse 
makes with the meridian in latitude A, and R" the radius of 
curvature of this section in the same latitude; and by the 
differential calculus we have R"=R+(R'-R) sin 2A. 

Multiply this equation by dA, and we have 
R"dA =RdA+(R'--R).dA Si.2A, 

which is the measure of the sum of all the radii of curvature 
in the angle dA: and the integral beginning with A is 

A l 
RA+(R'-R). (- sin A) 

expressing the measure of the sum of all the radii of curva- 
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ture in the angle A. When A=2?r= a circumference, this sum 
becomes 7r.(R+R'), which, by putting for R and R' their values 
given above in terms of s and A, is expressed by 

7 Z 1+2J sin2A 2: 
and this is the proper measure of the sum of all the radii of 
curvature at any point of the meridian. 

Now in any equal particles of surface it is evident that an 
equal number of radii of curvature may be drawn; we must 
therefore multiply the preceding sum 

by the differential of the spheroidal surface 
2?.dA 0oS AA o +2 COs2% ., 

and the product 47r2.(t+2).dA cos A is the differential of the 
sum of all the radii of curvature. The integral beginning with 

is 47r2.(l+2J) sin A, which, when A,=, is 472.(1+2): and the 

double of this, viz. 8s2.(1+0s) is the measure of the sum of 
all the radii of curvature on the surface of the spheroid. 

By reasoning in a similar manner with a sphere to the ra- 
dius r, we have the sum of all the radii at any point =2rr, 
which multiplied by the differential of the spherical sur- 
face 27rr.dAcosx gives 4,2r3.dxcosx for the differential 
of the sum of the radii of the sphere. The integral 
beginning with A is 4rTr3. sin'2; which, by making =~, and 

then doubling, becomes s82.r3 for the measure of the sum of 
all the radii in the sphere. 

Lastly, when the radius of the sphere is a mean of all the 
radii of curvature of the spheroid, the two integrals found 
above must be equal; we have therefore, s8r.r=s8r2.(li+2), 
whence r3=l+2a, and consequently r=l+-~ , which is the 

3 

radius of the required sphere, and agrees exactly with what 
has been found in the solutions of the preceding problems. 
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Nearly related to this problem is the following, the solution 
of which being nearly similar to that just exhibited, need not 
be given in detail. 

PROBLEM V. 

To find a sphere of which the curvature may be equal to 
the mean curvature of a given oblate spheroid of small ellip- 
ticity. 

SOLUTION. 

The curvature being inversely as the radius of curvature, 
we have only to use every where the reciprocals of a, a' R", 
instead of these quantities themselves in the preceding solu- 
tion. The curvature of the meridian and of the great ellipse 
at right angles to it will be measured by 1--.(2-3 cos2x), 
and 1-J.(2--cos 2); and the value of the required radius of 

the sphere is found as before r= +,. 

PROBLEM VI. 

To find a sphere of which the nth power of the radius may 
be a mean of the nth powers of all the radii of an oblate sphe- 
roid of small ellipticity. 

SOLUTION. 

The solid angle at the center of the spheroid, or the corres- 
ponding spherical surface to the radius unity, is the measure 
of the number of radii that can be drawn to the correspond- 

Zz 
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ing elementary particle of surface on the spheroid. This solid 
angle or spherical surface is expressed by 27r.d cos ^, which, 
multiplied by gn gives 27rW.d^ cos for the differential of the 
sum of nth powers of the radii in the spheroid. 

But since = t +,. cos A, therefore n= 1 +nS cos 2, and there- 
fore the differential just found, becomes 

2r) dAcos +ndA cos 3A. 
The integral of this, beginning with A, is 

27r sin ^+nJ (sin A-- sin 3) }, 3 
7r 2nJ 

which, when A=i becomes 2r i+-- ; and the double of 

this, viz. 47r 1+- , is the sum in the case of the sphe- 

roid. 
Again, ' being the radius of the sphere, we obtain by a 

similar method 47r.rl" for the sum of the nth powers of the 
radii: and since, when r" is a mean of all the el the latter sum 
must be equal to the former; we have therefore 

Irrn=4r. 1+--- , 

2nc 
whence r"= t+- , and extracting the nth root, we have 

3 

r= l+ ; the same result as in the preceding problems. 3 
In like manner we may find the radius of the sphere such 

that its nth power may be a mean of the nth powers of all 
the radii of curvature in the spheroid: and the result will be 
the same as before. 

PROBLEM VII. 

To find a sphere such that any function of its radius may 
be a mean of the similar functions of all the radii of an oblate 
spheroid of small ellipticity. 
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SOLUTION. 

Let (<P) be any function of the radius e, and according to 
what was shown in problem 6th, the differential of the sum 
of all the P(e) in the spheroid is 2x.P(?).dAcosA, or which is 
the same thing, 2 ordAcos.((1+Jos-o). 

But ,(i++COS A)=A+BJCOS A, in which A and B are numbers 
deduced from unity according to the form of the function p: 
the preceding differential therefore becomes 

27r. I AdACOSA+ BJ. dACOSs3 , 

of which the integral beginning with A is 

2p. AsinA+B (sin 3-- sin ) . 

C 2 This integral, when A=, becomes 2r. A+ -B ,thedou- 

C. o 3 
of which 4r. ~ A+3B~ } iS the measure of the sum of all the 

similar functions of e in the spheroid. 
Again, let us denote the required radius r by l+a, and the 

differential of the sum in the sphere is 27dAcosA.p(l+a). 
But since P(l+Jcos 0)=A+B. C0os2 

therefore <P(t+a)=A+Ba, as is evident by writing a instead of 
Jco A, and A and B are the same numbers for the sphere as 
for the spheroid: the differential of the sum in the sphere is 
therefore 2rdAcosA.(A+Ba), of which the integral, beginning 
with x, is 2rsinx.(A+Ba); and by putting A=2, and doubling 

the result, we have the sum of all the similar functions of 
the radii in the sphere expressed.by 4r.(A+na). 

Now this sum must be equal to that found in the case of 
the spheroid; we have therefore 

4zr.(A+Ba)==4n(.( A+gB), 
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2 whence A+Ba=A+-B, and consequently a=-9,andtherefore 

33 l+a=r=l +}~ as before. 

By a method nearly similar, we may resolve the following 
problem. To find a sphere such that any function of its 
radius may be a mean of the similar functions of all the radii 
of curvature in the spheroid. 

Each of the last two problems comprehends the other, and 
all those in the preceding part of this paper, with many others 
which it is unnecessary to mention: we have therefore good 
reason to conclude that the mean diameter of the earth is 

truly determined by the formula r=a a- or which amounts 

the same thn +(2 2a+b to the same thing r=b+8(a--b), or r= , or more simply o 3 

by r=i+ e. 

PROBLEM VIII. 

To determine the gravity which ought to be assigned to 
the earth's surface when taken as a sphere. 

SOLUTION. 

Let g and g' be the gravities at the pole and equator of the 
terrestrial spheroid, and, by the theory of gravity on the sur- 
face of revolving spheroids, the gravity in latitude A is 
g'+(g-g') cos %, which, multiplied by the differential of the 
surface 2'r2'.dA cos A, gives 

27rdA cos A (1+2 cS . (g +(-g') Cos 2A), 
or 2x g'dA cosA + (g-g'+2g' J).d cos A 
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for the differential of the measure of the whole gravity on 
every part of the surface of the earth. This differential inte- 
grated so as to begin with A gives 

8 g ̂sinA+(g-- - + ).(s-siw-3sin3 A) }; 

which by taking =-9 and doubling the result, gives 

4. (-_-3 g _9+24s) } 
for the measure of the whole gravitation on the surface of the 
spheroid. 

This quantity divided by the whole surface of the sphe- 
roid, or of the sphere having an equal surface, viz. by 

4tn .(+ 

the quotient g'+(g-), or is the meangravityre- 

quired. 
It is easy to perceive that this gravity also belongs to the 

2 
latitude 35? 16' in which cos =-, as in the determination of 

the mean radius r. 
In this latitude 35? 16' in which the surface of the mean 

sphere cuts the surface of the terrestrial spheroid, the attrac- 
tion towards the sphere is equal to the attraction towards the 
spheroid, whether we suppose the densities of both to be 
uniform, or to vary according to the law adopted in the solu- 
tion of the second problem, when the powers of J above the 
first are neglected. We may conclude, therefore, that the 
radius of the required mean sphere and the gravity on its 
surface should be equal to the semidiameter and gravity of 
the terrestrial spheroid in latitude 35? 16'. 
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Having determined the most probable axes of the terres- 
trial spheroid from the measurement of degrees of the meri- 
dian by a method which I discovered several years ago, and 
published in The Analyst; the resulting mean radius was 
found to be 3959.36 English miles. The diameter of the 
earth taken as a sphere is therefore 7918.7, the circumfe- 
rence 24877.4, and the length of a degree of a great circle 
69.104, or 697\r English miles very nearly. 
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